Parametric equations

By Martin McBride, 2020-09-12
Tags: parametric equation
Categories: coordinate systems pure mathematics

We often define a curve by expression $x$ as a function of $y$:

$$y = f(x)$$

Using parametric equations we define the $x$ and $y$ coordinates of the points on the curve in terms of an independent variable, which we will call $t$:

$$ \begin{align} x = g(t)\newline y = h(t) \end{align} $$

For any value of $t$, a value of $x$ and $y$ can be calculated, and the point $(x, y)$ will lie on the curve.

One way to think of this is to imagine $t$ representing time. As the time changes, the point $(x, y)$ will move, tracing the curve. But this is just an aid to understanding, the parameter $t$ does not necessarily represent time.

In this section we will look at the parametric equations of parabolas and hyperbolas, and also see how to express them as Cartesian equations.

See also

Join the GraphicMaths Newletter

Sign up using this form to receive an email when new content is added:

Popular tags

angle area cartesian equation chord circle combinations complex polygon cosh cosine cosine rule cube decagon derivative diagonal directrix dodecagon ellipse equilateral triangle exponent exponential exterior angle focus gradient hendecagon heptagon hexagon horizontal hyperbola hyperbolic function interior angle inverse hyperbolic function irregular polygon isosceles trapezium isosceles triangle kite locus major axis minor axis newton raphson method nonagon normal octagon parabola parallelogram parametric equation pentagon perimeter permutations power pythagoras proof quadrilateral radius rectangle regular polygon rhombus root sine sine rule sinh sloping lines solving equations solving triangles square standard curves star polygon straight line graphs symmetry tangent tanh transformations trapezium triangle vertical